Detection of colour filter array
interpolated images

Andrew B. Lewis

UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

Digital imaging hardware

» Light from the subject passes through a lens and hits a
charge-coupled device (CCD). The surface of the chip is an
array of photoactive capacitors.

> After the exposure, a control circuit repeatedly causes each
capacitor to transfer its charge to its neighbour, like a shift
register. Each final capacitor transfers its charge to an
amplifier which converts the charge into a voltage.

» An analog-to-digital converter samples the amplifier's output
and stores it digitally in a bitmap.

Capturing a colour image

» To capture colour images, digital cameras often use a
repetitive pattern of colour filters positioned over the
capacitor array, called a colour filter array (CFA).

» For each square of four pixels, the CFA contains two green
cells, one red cell and one blue cell.

» Patented by Bryce E. Bayer of Eastman Kodak in 1976
(US patent 3,971,065).

Producing a red/green /blue image (demosaicing)

» The image capture device interpolates the two missing colour
components at each pixel.

» Recall that Y =~ 0.3R +0.6G + 0.1B. Green is often treated
as the luma channel.

» Bilinear and bicubic interpolation apply to each channel
independently. They convolve the input with a 2-D filter to
find the missing values.

» Smooth hue transition interpolation applies bilinear
interpolation to the green channel, then bilinearly interpolates
the ratio R/G or B/G over missing red/blue pixels.

» Median filter interpolation calculates the bilinearly
interpolated image, then applies a median filter to the pairwise
differences between the channels (R — G, R— B, G — B).

CFA interpolation detection

Gallagher, Chen: Image authentication by detecting traces of
demosaicing, Proc. CVPR WVU Workshop, 2008.

1. High-pass filter the green channel = increase the difference in
variance between original and interpolated samples.

2. The MLE of the variance of samples on a diagonal d is
proportional to the mean of its absolute values!, m(d).

3. In interpolated images, this signal will be periodic over T =2

samples = peak in Fi{m(d) 5;(1).
4. Use a threshold detector to check for a peak at this frequency

(relative to the median value of the transformed signal).

! Assuming IID Gaussian samples

Terminology of inverse probability

Unknown parameters 6, data D, assumptions H

P(D|0,H)P(0|H)
P(DIH)

P(6|D,H) =

likelihood x prior

evidence
The quantity of P(D|6,H) is a function of both D and 8. For
fixed O it defines a probability over D. For fixed D it defines the
likelihood of 6.

posterior =

Maximum likelihood estimation

We wish to estimate 8 on the basis of data D. The maximum
likelihood (ML) estimate of the parameters from the data is

~

OmL(D) = argmax P(D|6).
0

Pixel variance: bilinearly interpolation

o otherwise.

Pixel variance: 2-D Laplace filtered (1)

For non-interpolated pixels (i.e., (i + j) mod 2 = 0)
Var(Y; j) = Var (—45(1,j +3 ()A(i—z,j + X1 a1 + K+ K jo1 + Xijeo + Kin g + -))
+ 3 (Kic2g+ Xijsz + Kivzj + i j—2))
= 902 +.+ %02 = %02,

E(Yij) = —3X+ 3 -4+ § - 4X =0,

Pixel variance: 2-D Laplace filtered (2)

For interpolated pixels (i.e., (i + j) mod 2 = 1)

Var(Yj ;) = Var (*4' Ko+ X+ K g+ K joa) + Ximnj + X + K j + Xi,j—l)
=0

» The second-order differences of a bilinearly interpolated image
have zero variance in interpolated pixels, and high variance in
non-interpolated pixels.

» The algorithm works by estimating the variance along each
diagonal (which consists entirely of interpolated or
non-interpolated pixels). If the variances follow a periodic
pattern down the image, this indicates that it may have
undergone interpolation.

MATLAB source code

function result = cfadetect(img)

% Load the green channel of the image
img = im2double(img) = 255.0;
g img(:, :, 2);

% High pass filter
laplace_.matrix = [0 1 0;

1 -4 1;
0 1 o0];
filtered_g = conv2(g, laplace_matrix, ’'valid');

% Find the sum of all the diagonals in the filtered green
diagonals = arrayfun(@(d) mean(abs(diag(filtered_g, d)))

—size(filtered_g, 1) + 1 : size(filtered_g, 2) — 1)

channel

% Show the DFT of the signal, with a log scale on the Y axis

semilogy (abs(fft(diagonals)));

result = filtered_g;

