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ABSTRACT

We present a variant of the JPEG baseline image compression algorithm optimized for images that were generated
by a JPEG decompressor. It inverts the computational steps of one particular JPEG decompressor implementa-
tion (Independent JPEG Group, IJG), and uses interval arithmetic and an iterative process to infer the possible
values of intermediate results during the decompression, which are not directly evident from the decompressor
output due to rounding. We applied our exact recompressor on a large database of images, each compressed at
ten different quality factors. At the default IJG quality factor 75, our implementation reconstructed the exact
quantized transform coefficients in 96% of the 64-pixel image blocks. For blocks where exact reconstruction
is not feasible, our implementation can output transform-coefficient intervals, each guaranteed to contain the
respective original value. Where different JPEG images decompress to the same result, we can output all possi-
ble bit-streams. At quality factors 90 and above, exact recompression becomes infeasible due to combinatorial
explosion; but 68% of blocks still recompressed exactly.

1. INTRODUCTION

Lossy perceptual coding algorithms (JPEG, MPEG, etc.) were designed to compress raw audio-visual data
captured by sensors. Ideally, such data should only ever go through a single lossy compression/decompression
cycle. In practice, however, an image is often compressed already at the beginning of its editing history, such
as in a digital camera, and repeatedly compressed later, after decompression and editing. Only very limited
manipulation is practical without first decompressing (e.g., cropping and copying along certain boundaries,
rotation by 90◦, mirroring, scaling by certain factors1).

A recompressor is an alternative compression algorithm, designed to process data that was output by a
decompressor. Depending on how strictly the decompression process was standardized, a recompressor may have
to be designed specifically for a given decompressor implementation. We call a recompressor exact if its output
is either identical to the input of the preceding decompressor, or equivalent to it, such that it decompresses
to the same result and is not longer (Figure 1); complete if it generates the set of all equivalent inputs; and
stable if localized edits on the data after decompression lead to only localized further loss of information during
recompression. Näıve recompression is the application of standard lossy compression algorithms to decompressed
data, which in practice rarely achieves exact or stable recompression, even with identical quantization and sub-
sampling parameters.2 This is due to rounding, range limiting, and the fact that some compressors do not apply
the inverse functions of the corresponding decompression steps.
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Figure 1. Exact recompression maps a decompressed image onto a set of equivalent possible original JPEG bit-streams.



1.1 Relationship to previous work
Various techniques have been proposed for quantization-table estimation,3,4 which use the forward discrete cosine
transform (DCT) and histograms of its coefficients to estimate the quantization factors used. As this does not, in
practice, exactly invert the corresponding inverse DCT (IDCT) implementation, the resulting small perturbations
blur the peaks in the resulting DCT coefficient histograms, which hinders the estimation of quantization factors
and warrants probabilistic techniques. In contrast, we invert the implementation of both the inverse DCT and
the chroma-interpolation operations exactly. Where we lack the information needed to unambiguously identify
a single input integer, we output the smallest interval guaranteed to contain the corresponding original value.

Neelamani et al.2 have described methods for finding the JPEG compression history of an image, that is,
the colour-space, chroma-interpolation method and quantization tables used during compression. They could be
used as heuristics to speed up selection of the appropriate exact recompressor for an image where the compressor
and its options are unknown.

1.2 Applications
One application for exact, stable recompression are editors that read and write compressed data. Plugins exist
already for some image editors to keep track of which blocks have not been modified since a JPEG image was
opened, so that these blocks can be copied directly in compressed form when the image is saved.5 The complexity
of integrating this into the application could be avoided with an exact, stable recompressor, which can be applied
without auxiliary information.

Many copy-protection mechanisms keep the compressed bit-stream confidential, via encryption, giving end-
users plaintext access only to the output of the decompressor. Their reliance on the unavailability of exact
recompression motivates its study, to understand both its practicality and how best to modify decompressors to
prevent it without reducing signal quality.

As a by-product, exact recompression can also reveal information that may be of interest in forensic analysis
of uncompressed data. It recovers parameters used during previous compression, which may give clues about
which compressor was used before. It can also reveal whether decompressed data (or which unmodified sections
of it) could possibly have been the output of a particular given decompressor implementation or not, providing
further clues about the processing history and which parts of the data were modified since the last decompression.

Exact recompression can also be used to hinder forensic analysis. Näıve recompression can leave clear traces
in the data, such as the JPEG double-compression artifacts described by Popescu and Farid,6 whereas exact
recompression adds no further information.

For some data, a recompression algorithm may even lead to a more compact representation, as it will search
for those quantization parameters that lead to the smallest output without altering content. Recompression
algorithms could also be extended to assist in compressing the data more aggressively (using different quantization
parameters) without introducing recompression artifacts, that is, as if the lower quality setting had been chosen
initially.

1.3 Contribution
In Section 2, we describe an exact, complete, stable recompressor for the DCT-based JPEG baseline algorithm,7

as implemented in the widely-used open-source Independent JPEG Group (IJG) decompressor8 (version 6b). It
reads an RGB image and either returns one or more JPEG bit-streams that on IJG decompression will result in
the input image, or it identifies regions in the input that could not have been output by the IJG decompressor.
The recompression is exact because our algorithm, when provided with a decompressed image, returns a (normally
singleton) set of bit-streams, including one with the original JPEG data (Figure 1).

The JPEG decompressor algorithm consists of a lossless entropy decoding stage followed by (a) dequantization
of values in 8 × 8 blocks based on two quantization matrices (luma and chroma) given in the bit-stream, (b)
application of the inverse discrete cosine transform (IDCT) to each block, (c) up-sampling of the two chroma
planes to the same size as the luma plane and (d) conversion of colour values from the YCbCr space to the RGB
space∗.
∗Other colour-spaces and subsampling schemes are possible, but here we consider the default settings.



The input to the recompressor is an uncompressed RGB image. Our recompressor implementation inverts
each stage in turn, refining sets of intermediate values in an iterative process, until it reaches a fixed point. At
any stage during execution, the sets are guaranteed to contain the intermediate values that actually occurred
during the preceding decompression. If a set becomes empty (for example, due to intersection with a disjoint set),
this indicates that the input image was not produced by the exact recompressor’s corresponding decompressor
implementation, or that the image was modified after decompression.

2. EXACT RECOMPRESSION OF JPEG IMAGES

All scalars in this paper are integer, unless otherwise stated. Scalars, vectors and matrices over integers carry no
accent, whereas those over sets of integers are marked as ẍ and those over intervals of integers are marked as x̄.
The interval x̄ = [x⊥, x>] contains the integers from x⊥ up to x> inclusive, with element membership, “union”
and intersection defined as

y ∈ x̄ := x⊥ ≤ y ≤ x>
x̄ ∪ ȳ := [min{x⊥, y⊥},max{x>, y>}]

x̄ ∩ ȳ :=


empty if x⊥ > y> ∨ y⊥ > x>,

[ max{x⊥, y⊥},
min{x>, y>}]

otherwise.

The input RGB image has width w and height h divisible by sixteen:†

ux,y ∈ {0, . . . , 255}3 with 0 ≤ x < w = 16 · wb and 0 ≤ y < h = 16 · hb. (1)

2.1 Colour-space conversion

The final step in the decompressor applies the colour-space conversion function C to each pixel, which converts
each 3× 8-bit luma and chroma (YCbCr ) value into a 3× 8-bit RGB value.

Our recompressor inverts C. C−1 maps each RGB triple in the range of C to all YCbCr values in the domain
of C that map to this RGB colour. C−1 therefore associates with each RGB colour a set of possible YCbCr

colours. We apply C−1 to each input RGB pixel ux,y, resulting in a set (v̈x,y) for each pixel:

v̈x,y = C−1(ux,y)

C−1 : {0, . . . , 255}3 → P
(
{0, . . . , 255}3

)
and

C−1 : (r, g, b) 7→
{

(y, cb, cr) ∈ {0, . . . , 255}3 : C(y, cb, cr) = (r, g, b)
}
.

In our implementation, the inversion of C is tabulated in a 224-entry look-up table, mapping RGB values to sets
of YCbCr values.

The RGB triple (0, 255, 0) is associated with 29714 possible YCbCr values, the largest set in the domain of
C−1. Around 107 RGB triples are associated with an empty set, as the decompressor can never output them.

2.2 Chroma downsampling

In the default sub-sampling mode, both chroma channels are stored at half the horizontal and vertical resolution
of the luma channel. In the up-sampling calculation, each sample of the input chroma plane is located in the
centre of a 2× 2 square of output samples. By default, the IJG decompressor uses the up-sampling filter shown
in Figure 2.2. The down-sampled planes are padded by repetition at each edge so that values on the border of
†The information loss caused by post-decompression cropping across a block boundary can be modelled using intervals,

but our initial implementation does not support this.
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Figure 2. The chroma up-sampling filter in the IJG decompressor weights contributions from neighbouring samples by
1
16

(1, 3, 3, 9) in order of increasing proximity.

the image can be calculated in the same way as inner samples. Given a down-sampled plane of pixels wi,j (with
−1 ≤ i ≤ w

2 and −1 ≤ j ≤ h
2 ) the up-sampled values are calculated as

vx,y =
⌊

1
16

(8 + α · wi−1,j−1 + β · wi,j−1 + γ · wi−1,j + δ · wi,j)
⌋
, (2)

with weights

(α, β, γ, δ) =


(1, 3, 3, 9) if x = 2i, y = 2j
(3, 1, 9, 3) if x = 2i− 1, y = 2j
(3, 9, 1, 3) if x = 2i, y = 2j − 1
(9, 3, 3, 1) if x = 2i− 1, y = 2j − 1.

(3)

The division by sixteen and subsequent rounding causes information loss, but we mitigate this by exploiting
the redundancy introduced when the up-sampling process quadruples the number of pixels. We iteratively recover
as much information as possible about the down-sampled chroma planes, using interval arithmetic to keep track
of uncertainty. The algorithm represents knowledge of possible down-sampled values wi,j in the form of intervals
w̄i,j . These are initialized to [0, 255] and then refined repeatedly using the known sets of possible values in the
up-sampled planes v̈Cb

x,y, v̈Cr
x,y and our current estimates for the down-sampled planes w̄i,j , by rearranging (2).

To evaluate formulae with intervals as variables, we use

[q⊥, q>] + [r⊥, r>] = [q⊥ + r⊥, q> + r>] (4a)
[q⊥, q>]× α = [q⊥ × α, q> × α] (4b)

and to rearrange these formulae, we use

[p⊥, p>] = [q⊥, q>] + α =⇒ [q⊥, q>] = [p⊥ − α, p> − α] (5a)

[p⊥, p>] = [q⊥, q>]× α =⇒ [q⊥, q>] =
[⌈p⊥

α

⌉
,
⌊p>
α

⌋]
(5b)

[p⊥, p>] =
⌊

[q⊥, q>]× 1
α

⌋
=⇒ [q⊥, q>] = [p⊥ × α, p> × α+ (α− 1)]. (5c)

Note that in (5b), if p⊥ or p> is not divisible by α, we set the wanted interval q̄ to the smallest interval that on
multiplication by α will contain all the multiples of α in p̄.

Rearranging equation (2) gives the interval for a particular down-sampled value wi′,j′ in terms of the other
down-sampled values in the formula and the up-sampled output value vx,y. For example, applying the rules
in (5) to solve (2) for a down-sampled value wi,j in relation to an up-sampled value vx,y with x = 2i, y = 2j, we
get

w̄i,j =
[⌈

1
δ

(vx,y × 16− (8 + α · w̄i−1,j−1 + β · w̄i,j−1 + γ · w̄i−1,j))
⌉
,⌊

1
δ

(vx,y × 16 + 15− (α · w̄i−1,j−1 + β · w̄i,j−1 + γ · w̄i−1,j))
⌋] (6)



where vx,y ∈ v̈c
x,y is an integer and the w̄i′,j′ variables are intervals. Where v̈c

x,y contains several possible values
vx,y, we have to evaluate the right-hand side of (6) for each and assign their union to w̄i,j . Each sample in each
down-sampled colour plane c is the subject of 16 equations, of which (6) is one example, because each down-
sampled value wi′,j′ influenced the surrounding 16 pixels when the decoder up-sampled them. The overdetermined
system of equations is solved iteratively using Algorithm 1. We change the scan order in each iteration of the
algorithm to accelerate convergence.

Algorithm 1 Down-sample v̈c
x,y

k ← 0
w̄0

i,j ← [0, 255] at all positions −1 ≤ i ≤ w
2 ,−1 ≤ j ≤ h

2
repeat
k ← k + 1
change scan order of (x, y) ( , , , )
for each sample position (x, y) in the up-sampled plane do

set (i, j) based on (x, y) using Equation (3)
for (i′, j′) ∈ {(i− 1, j − 1), (i, j − 1), (i− 1, j), (i, j)} do
w̄k

i′,j′ ← w̄k−1
i′,j′ ∩

⋃
s∈v̈c

x,y
ā, where ā is the smallest possible interval that satisfies Equation (2) if we

substitute ā for wi′,j′ , s for vx,y and the current estimates w̄k−1 for
the other w values.

end for
end for

until w̄k = w̄k−1

return w̄k

Since the two chroma channels were up-sampled independently, we also down-sample them independently in
Algorithm 1. As the next step (inverting the IDCT) also relies on interval arithmetic, we convert the sets of
possible luma values (at the original resolution) to an interval representation: w̄Y

x,y = [min{v̈Y
x,y},max{v̈Y

x,y}].

2.3 Discrete cosine transform
The IJG decompressor implements the inverse DCT as

IDCT(X) = max
{

0,min
{

255,
⌊

1
218

(⌊
1

211

(
TX + 210

)⌋
TT + 217

)⌋}}
(7)

where X is an 8× 8 matrix of DCT coefficients, T is the underlying 1-D IDCT matrix used (see Appendix A‡)
and addition of a matrix and a scalar applies element-wise. Due to rounding and clipping, (7) is not linear and
not exactly inverted by the DCT in the IJG compressor.

We need to solve IDCT(X) = x for X, knowing only that the 8×8 matrix result x lies within a given interval
matrix x̄. This will result in a frequency-domain interval matrix X̄. We can later refine the result to

X̄ ′ = {X ∈ X̄ : IDCT(X) ∈ x̄ ∧X matches quantization constraints}. (8)

The interval matrices x̄ stem from the previously down-sampled chroma (w̄Cb
i,j , w̄Cr

i,j) and luma (w̄Y
x,y) planes,

tiled into non-overlapping 8× 8 blocks.
To invert (7), we apply the rules in (5), in conjunction with an additional rearrangement rule for matrix

pre-multiplication: if TX = Ȳ , given an interval matrix Ȳ and a non-singular fixed matrix T , we can efficiently
find an interval matrix X̄ guaranteed to contain X as

Xi,j ⊥ =

⌈ ∑
k

T−1
i,k ·

{
Yk,j ⊥, if T−1

i,k ≥ 0
Yk,j >, if T−1

i,k < 0

⌉

Xi,j > =

⌊ ∑
k

T−1
i,k ·

{
Yk,j >, if T−1

i,k ≥ 0
Yk,j ⊥, if T−1

i,k < 0

⌋
,

(9)

‡IJG uses the Loeffler/Ligtenberg/Moschytz fast IDCT9 by default.



and similarly for matrix post-multiplication XT = Ȳ . Because the elements of the matrix T−1 are fractions of
very large integers, the multiplications in (9) require arbitrary-precision arithmetic over rational numbers. We
also use the rules

max{x̄, a} = ȳ =⇒ [x⊥, x>] =

[ {
−∞, if y⊥ ≤ a
y⊥, otherwise

, y>

]

min{x̄, a} = ȳ =⇒ [x⊥, x>] =

[
y⊥,

{
∞, if y> ≥ a
y>, otherwise

] (10)

2.4 Determining possible quality factors

The JPEG bit-stream header includes 8 × 8 quantization matrices for luma and chroma. Each matrix ele-
ment specifies a divisor (quantization factor) for linear quantization of the corresponding coefficient in every
transformed 8× 8 block.

The recompressor DCT described in Section 2.3 outputs intervals for (dequantized) DCT coefficients, where
each interval contains the result of a dequantization operation. For each coefficient position (i, j) ∈ {0, . . . , 7}2,
we initially assume that any quantization factor between 1 and 255 is possible (baseline JPEG uses 8-bit precision
for these values), then eliminate any factor which is inconsistent with the interval we obtain for the coefficient
in any block. The set of possible quantization factors for the DCT coefficient position (i, j) in component
c ∈ {Y,Cb,Cr} is given by

P c
i,j =

{
q ∈ {1, . . . , 255} : @b.

(
W̄ c

b

)
i,j

= [w⊥, w>] ∧ w⊥ div q = w> div q ∧

((w⊥ < 0 ∧ q - w>) ∨ (w⊥ ≥ 0 ∧ q - w⊥))}
(11)

where W̄ c
b denotes the b-th block of intervals in component c and

x div q =

{
bx/qc x ≥ 0
dx/qe x < 0.

(12)

In our implementation, the set of possible quantization factors is stored efficiently in two 8× 8 tables of 256-bit
masks, which describe the set of quantization factors possible at each position in each quantization matrix.

In the IJG compression utility, the quantization matrices are selected based on a quality factor f ∈ {1, . . . , 100}
which selects what scaling factor will be applied to the matrices suggested by Annex K of the JPEG standard7.
Therefore, when the user specifies a quality factor, only 100 quantization-matrix pairs are possible. Given the
possible quantization factors at each coefficient position, the set of possible quality factors is given by

Q =
{
f ∈ {1, . . . , 100} : ∀(i, j) ∈ {0, . . . , 7}2.

(
QY

f

)
i,j
∈ PY

i,j ∧
(
QC

f

)
i,j
∈ PCb

i,j ∧
(
QC

f

)
i,j
∈ PCr

i,j

}
, (13)

where QY
f and QC

f are the luma and chroma quantization matrices associated with quality factor f , respectively.

2.5 Quantization and exhaustive search

If an image was compressed with quality factor f , the set of possible quality factors in (13) will include f and
also higher quality factors whose quantization bins are a superset of those associated with quality factor f .§

In addition, our uncertainty in the DCT coefficient values may allow quality factors lower than f which also
give quantization bins that lie within all DCT coefficient intervals, but where the refinement (8) yields an empty
set for one or more blocks. In this case, we remove f from the set of possible quality factors and try the next
higher candidate for f .
§For example, quality factor 100 implies no quantization, which means all values s ∈ {−1024, . . . , 1023} are possible

for each DCT coefficient.



For each block number b in component c, the quantized intervals with quality factor f are given by(
ˆ̄W c

b

)
i,j

= [ŵ⊥, ŵ>]

ŵ⊥ =


w⊥ div

(
Qc

f

)
i,j

w⊥ < 0 ∨
(

Qc
f

)
i,j
| w⊥(

w⊥ div
(

Qc
f

)
i,j

)
+ 1 otherwise

ŵ> =


(
w⊥ div

(
Qc

f

)
i,j

)
+ 1 w> < 0 ∨

(
Qc

f

)
i,j
| w>

w⊥ div
(

Qc
f

)
i,j

otherwise

(14)

The number of possibilities for a given quantized block is given by∏
i,j

∣∣∣∣( ˆ̄W c
b

)
i,j

∣∣∣∣ (15)

where |w̄| denotes the number of integers in the interval w̄.

2.5.1 IDCT refinement

Based on running our recompressor on many images with different quality factors, we found that the number of
possibilities for most blocks allows for an exhaustive search when the quality factor is less than about 90. For
higher quality factors, the intervals output by the IDCT are normally sufficiently large that a search is infeasible.
In our implementation we set the limit on the maximum allowable possibilities to L = 220 block values¶.

If the number of possibilities for a block in (15) is less than the threshold L, for each possible value of the
block we dequantize the quantized coefficients, perform an IDCT according to (7), and check whether outputs lie
within the intervals w̄c

b. We approximate the set of blocks that meet this condition by an 8× 8 interval matrix.
If exactly one value for the block meets the condition, the block is marked ‘exact’. If more than one value meets
the condition, the block is marked ‘ambiguous’ and passes to the next stage of the search.

If the number of possibilities for a block is greater than L, we mark the block as infeasible to search.(
ˆ̄W ′cb

)
i,j
⊆
(

ˆ̄W c
b

)
i,j

(16)

2.5.2 Impossible blocks

If the IDCT refinement stage finds that none of the possibilities for a block are consistent with the unquantized
intervals w̄c

b, the block is marked ‘impossible’. This indicates that the block was not output by the IJG decom-
pressor, so we assume that the chosen quality factor was incorrect, and return to the quantization stage with
the next quality factor in (13).

2.5.3 Full decompression refinement of ‘ambiguous’ blocks

Blocks which were marked as ‘ambiguous’ and are co-located with exact blocks in the other colour channels are
decompressed to the RGB representation and checked against the uncompressed input data. We tighten the
intervals to bound those values which decompress to the original input data. If exactly one value remains, the
block is marked as ‘exact’. (

ˆ̄W ′′cb

)
i,j
⊆
(

ˆ̄W ′cb

)
i,j

(17)

After this step, remaining ambiguous blocks represent multiple possible bit-streams which decompress to the
same image.
¶This gives a worst case search with a roughly comparable number of IDCTs as required to decompress one second of

720p60 high definition video in a block/DCT-based video codec such as MPEG-2.
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Figure 3. Recompression performance for a dataset of uncompressed images from the UCID.10 1338 colour images were
compressed and decompressed at quality factors f ∈ {40, 60, 70, 80, 82, 84, 86, 88, 90}, then recompressed. The histogram
shows the proportion of infeasible blocks in each image, with zero indicating that the image was recompressed perfectly.

2.6 Colour-space conversion refinement

The colour-space conversion is the first source of uncertainty in the exact recompressor, as we derive sets of
YCbCr values for each pixel in the original image. By propagating back the spatial domain values from the
IDCT refinement and up-sampling the chroma as in the decompressor using (2), we find which YCbCr triples are
not consistent with the refined values, remove these from the sets and run another iteration of the recompressor
beginning with chroma downsampling. We repeat this process until no further refinement of the YCbCr triples
is possible.

3. RESULTS

We tested our recompressor on 1338 images from the uncompressed image database UCID.10 Using the IJG
command-line utilities cjpeg and djpeg for compression and decompression, we performed one compression
cycle on each image using each of the quality factors f ∈ {40, 60, 70, 75, 80, 82, 84, 86, 88, 90}, giving 13380 test
images.

As the test images are the result of a decompression operation using the IJG decompressor, no blocks
were classified as ‘impossible’ by our recompressor, meaning that all blocks in the images are either exactly
recompressed, ambiguous (meaning that multiple JPEG bit-streams produce the input on decompression) or
infeasible to search.

We ran our recompressor on each image, calculating the proportion of blocks in the image which were infeasible
to search. Figure 3 shows that, at lower quality factors, there are almost no blocks which are infeasible to search,
whereas at quality factors higher than 85, the number of infeasible blocks sharply increases. At quality factor
90, more than a quarter of all blocks were infeasible to search.

Images that were previously compressed at high quality factors are difficult to recompress because the quanti-
zation step does not reduce the number of possibilities sufficiently to allow a search. At lower quality factors (i.e.,
higher quantization factors) only a small number of possibilities normally remain inside the intervals resulting
from IDCT reversal. In cases where the quality factor is low, infeasible blocks are generally caused by saturated



values on inputs to the IDCT reversal (i.e., spatial domain samples equal to 0 or 255) which must be mapped to
large intervals as the last operation of the IDCT is to clip the range.

Our exact recompressor is able to match or outperform näıve recompression in all cases, as infeasible blocks
can be replaced with näıvely recompressed blocks, and other blocks are either ambiguous or exact, so result in
an identical image block to the co-located input block on decompression.
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APPENDIX A. IJG INVERSE DISCRETE COSINE TRANSFORM

T =



8192 11363 10703 9633 8192 6437 4433 2260
8192 9633 4433 −2259 −8192 −11362 −10704 −6436
8192 6437 −4433 −11362 −8192 2261 10704 9633
8192 2260 −10703 −6436 8192 9633 −4433 −11363
8192 −2260 −10703 6436 8192 −9633 −4433 11363
8192 −6437 −4433 11362 −8192 −2261 10704 −9633
8192 −9633 4433 2259 −8192 11362 −10704 6436
8192 −11363 10703 −9633 8192 −6437 4433 −2260


(18)


